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Abstract. One-dimensional profiles f ( x )  can be characlerized by a Minkowski-Bouligand 
dimension D and by a scde-dependent generalized roughness W ( f , f ) .  This roughness can 
be defined as the dispersion around a chosen fit to f (x) in an <-scale. It is shown that 
D = 1im6+012 - In W(f,<)/lnsl holds for profiles nowhere differentiable. "bilhis establishes 
a close connection between the roughness and the fractal dimension and proves that D = 2- H 
for self-affine profiles (H is the roughness or Hurst exponent). Two numerical algorithms based 
on the roughness, one around the local average (f ( x ) ) ~  (usual roughness) and the other around 
the local RMS straight line (a generalized roughness), are discussed. The estimates of D for 
standard self-affine profiles ate reliable and robust, especially for the last method. 

1. Introduction 

The seemingly complex forms of nature can be described in terms of the concepts of fractal 
geometry [l]. These forms often present statistical scale invariance and can be characterized 
by a few parameters (fractal dimensions and scaling exponents). In the case that the scale 
invariance comes from an isotropic length-scale transformation the object is called a self- 
similar fractal. We can cite as examples coastlines [I], percolation clusters [1,21, colloidal 
aggregates [3] etc. When an object is invariant under a transformation with different length 
scales in different directions it is a self-affine fractal [4] .  Recent works have demonstrated 
that a wide class of processes lead to objects with self-affine properties: plots of random 
walks [1,2], interfaces in far-from-equilibrium systems [5,6] and interfaces resulting from 
growth processes [5-8]. An interface is often characterized by the roughness W(f, E ) ,  which 
is defined as the fluctuation of the height f over a length scale E .  For self-affine interfaces, 
the roughness W(f, E )  scales with the linear size E of the surface by an exponent H, called 
the roughness or Hurst exponent. 

In this paper we consider the connection between generalized roughness and the fractal 
dimension for one-dimensional interfaces (profiles) f(x).  Profiles are characterized by a 
fractal dimension D (Minkowski-Bouligand dimension or box dimension [l]) and by a 
roughness or Hurst exponent H. Essentially the fractal dimension is related to the scaling 
properties of the area of a cover for the profile and the Hurst exponent measures the 
scaling of the average of a local roughness w ( x ,  E ) .  evaluated in an €-neighbourhood of x .  
We show that the average generalized roughness W(f,  E )  = w(x, ~ ) d x  is related to the 
fractal dimension by D = lime,&? - In W(f, E ) /  Incl. This result allows us to define two 
numerical algorithms. The first one is based on the usual roughness, namely the roughness 
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around the local average height ( f ( x ) ) , .  The second is based on a roughness around the 
local RMS straight line. These methods are tested on self-&ne curves with known fractal 
dimensions: the Weierstrass function and the fractional Brownian motion. The estimates of 
D are then compared with the ones obtained from the methods of the literature. 

This paper is organized as follows. In the next section we discuss briefly some known 
aspects of self-affinity and roughness. The Weierstrass function and the fractional Brownian 
motion are also presented. The mathematical aspects of the connection between the 
generalized roughness and the Minkowski-Bouligand dimension are discussed in section 3. 
In section 4 we define two numerical algorithms based on the roughness and discuss the 
results obtained. A summary of our results is presented in the final section. 

J G Moreira et a1 

2. Self-affinity and roughness concepts 

In order to discuss the differences between self-similar and self-affine fractals, let us 
present briefly some relevant definitions. We consider fractals built by recurrence relations 
(deterministic fractals) or by means of stochastic processes (statistical fractals). A more 
detailed discussion can be found in [ 1,2]. 

Consider a bounded set S in a Euclidean space of dimension d. The position of each 
point in S is described by a vector x = (XI, x 2 ,  . . . , x d ) .  An a#ne tramfurmation of real 
scaling ratios rl. ? I , .  . . rd (0 < ri < 1, with i = 1 . . .d )  takes each element of S with 
position x into an element of the set r(S) with position r(x) = ( r Ix1,  i - 2 ~ 2 ~ .  . . , r d x d ) .  The 
set S is self-aflne if it is the union of N distinct subsets congruent to r ( S ) .  By congruent we 
mean identical under translations and/or rotations. S is statistically self-affine if its subsets 
are statistically congruent to r(S). 

When all the scaling ratios are equal (rl = rz = . , . = rd = r )  we have a similarity 
transformation. In a similar way, the set S can be classified as self-similar or statistically 
self-similar. We can associate several dimensions to a self-similar set like the similarity 
dimension or the box dimension [1,2]. On the other hand, it is not so easy to associate a 
dimension to a self-&ne set [1,9]. In fact, we can obtain different dimensions depending 
on the way one measures it. 

Further, let us recall the definition of the box dimension. It is defined from the scaling 
of the average number (Nbox(L))  of d-dimensional boxes of linear size L needed to cover 
the set S, namely 

(Nbo.(L)) L - D .  (1) 

Here D is the box dimension. Fordeteministic self-similar fractals, such as the Koch curve, 
the Sierpinsky gasket or the standard Cantor set, both the similarity and the box dimension 
are equal and evaluated exactly, because the scaling is exact. For statistical fractals the 
dimensions are evaluated by using scaling arguments. 

In order to illustrate the differences in the evaluation of dimensions of self-affine sets, 
let us introduce two standard examples of such sets. The first is the Weiecstrass function 
(WF) f ~ ( x ) ,  defined as 

m 

f x ( x )  = b-nH[ 1 - COS (box) ]  
"=-CO 

where b > 1 and 0 <: H < 1. Typical graphs of this function are shown in figure 1. Note 
that the WF has a scaling behaviour with different scaling ratios, since f x ( b x )  = b H f ( x ) .  
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X 
Figure 1. The WeierstraSs function with b = 2.1 in the interval [0.60.0.611 for (a) H = 0.9, 
(b)  H = 0.5 and (c )  H = 0.1. 

The second is the trace Bu(t) of the fractional Brownian motion (FBM). B&) is a 
single-valued function of one variable (f) and its increments A B x ( A T )  = B&z) - B&) 
have a Gaussian distribution. The variance of this distribution is given by 

( A B i ( A t ) )  - AtZH (3) 
with 0 < H < 1,  At = If2 - tl I and where (. . .) denotes the ensemble average, There are 
several algorithms to generate the FBM. We use an algorithm described in Feder [Z, p 174, 
equation (9.25)]. In figure 2 we show some typical traces. The FBM is a statistical self-affine 
object because of its scaling properties. If A t  is changed by a factor r ,  the increments A B  
must be changed by a different factor r H ,  since 

(A@,(rAt)) - r'"(ABi(At)) .  (4) 

Now it is easy to obtain the box dimension of the FBM by using sculing arguments 
[Z, 91. Essentially, we evaluate the number of boxes needed to cover the @ace of BH(t )  
in a time span T and a vertical range B.  If we use small boxes we obtain the so-called 
local box dimension D = 2 - H. On the other hand, if we use boxes which are not small 
with respect to the vertical range, we obtain the global dimension D = 1. Moreover; if we 
measure the perimeter of the trace using a yardstick, we obtain different values for the local 
and global dimension (the so-called divider dimensions) [2]. If we evaluate the dimension 
by considering the intersection of E H  ( t )  with the time axis (the zero-set of the FBM) we find 
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f 
Figure 2. The fractional Brownian motion tnre wilh n = 8 and M = 700 for ( a )  H = 0.9. (b) 
H = 0.5 and (c) H = 0.1. 

D = 2 - H, in agreement with the local box dimension. Perhaps this last way of finding D 
is the least ambiguous one for associating a fractal dimension to a self-fine fractal 191. In 
the next section we will consider the direct evaluation, instead of using scaling arguments, 
of the local Minkowski-Bouligand dimension (which is, in this case, completely equivalent 
to the local box dimension). 

In many circumstances the interface f ( x )  generated from a smooth surface by some 
stochastic process becomes rough. These interfaces can be characterized by a roughness 
W(f, L) ,  which is defined as the fluctuation around the average of the height f at scale L, 
namely 

W W  L )  = ( fYx)) ,  - cfcx)rZ~ (5 )  

where ( . ) L  means an average over x in a scale L. 
If we consider the trace of the FBM with a time span L,  the roughness behaves like 

W ( B H ,  L )  N L H  (6) 
where H is the Hwst exponent. This usual roughness is evaluated around the average 
height. In the next section we show that the roughness can be,generalized as the fluctuation 
around other interpolating functions. In particular, we can consider the local best linear fit 
to f ( x )  and characterize the roughness as the fluctuations around this best linear fit. , 



On the fractal dimension of selfaffine pmfiles 8083 

3. The roughnes exponent and the fractal dimension 

In this section we present a proof of the relation D = 2 -  H for arbitrary profiles. Although 
this relation has long been known for exact self-affine profiles [IO], and can also be derived 
from scaling arguments for statistical self-affine profiles such as the fractional Brownian 
motion [2 ,9] ,  there is no rigorous proof. at least to our knowledge, that it works in the 
general case. In particular, our result can be applied to any experiment I l l .  121 without 
any assumptions of the statistical properties of the local scaling ratios. We should point out 
that for the case of statistical fractals, even the notion of fractal dimension can be viewed 
as a first approximation to the microscopic structure, and a multi-fractal analysis [2,5-7] is 
necessary. Our proof relies on the fact that the fractal dimension, as well as the roughness 
exponent, measures how far a fractal curve is from any smooth function which one uses to 
approximate it. 

Mathematically we define a profile or interface as the graph CJ of a continuous function 
f of a real variable x. Without loss of generality, we fix its domain of definition as the 
interval [O, I]. We are interested in the evaluation of the fractal dimension of the graph Cf. 
We shall investigate the Minkowski-Bouligand dimension [13], which is equivalent to the 
box dimension [IO]. Although these definitions of dimension characterize the local fractal 
properties of profiles, they can differ from the Hausdorff dimension [Z, 4,7]. In this work 
we do not evaluate the Hausdorff dimension. 

Tricot et al [I41 have demonstrated the equivalence between the box and Minkowski- 
Bouligand dimensions by using the notion of generalized covers. Covering the profile with 
figures of linear size E ,  and calling I U ( E ) ~ ~  the area of such a cover, the fractal dimension 
is given by 

The value of D is the same for all generalized covers using different geometric figures. 
Suitable figures should satisfy some non-distortion relations, for example, the figures are 
discs of radius E centred on (x, f (x)) in the Minkowski-Bouligand cover and squares in 
the box-dimension evaluation. The numerical algorithms resulting from the Minkowski- 
Bouligand and box dimensions have been analysed in Dubnc et QI [15]. The estimates 
obtained for D were poor when these algorithms were applied to profiles with known 
dimensions. It was found that the basic problem was the ‘thickness’ of the covers. In order 
to develop better numerical algorithms, Dubuc et a1 1151 have introduced two alternate 
ways of evaluating the fractal dimension: the horizontal structuring element method and the 
variation method. Both are based on the idea of building covers with intervals instead of 
geometrical figures. The first uses horizontal segments and the second vertical ones. 

Since we 
are interested in fractal graphs, we can assume that f is nowhere or almost nowhere 
differentiable. It is known that the graph o f f  has dimension 1 if its derivative is continuous. 
This is also the case if f is of bound variation (xy=;’ I f  ( x i )  - f ( x j + j ) [  limited for all 
partitions 0 = xg -= X I  c ’ ’  < xm = 1)  [16]. The possibility of a continuous function to 
have a graph of dimension strictly greater than 1 is thus related to the so-called 6-oscillation 
u(x ,  E )  of the function f, namely 

For further use, let us present briefly the variation method [14,15]. 

u(x ,  e )  = sup f ( x ‘ )  - inf f (x’) 
X ’ E R < ( X )  x’ER‘W 
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and to the <-variation o f f  in the interval [O. I ]  defined by 

J C Moreira et a1 

(9) 

Call U ( € )  the union of vertical segments S ( x ,  E )  = (x)Iinfx,ER,c,, f ( x ' ) ,  supzlERs~,,  f(x')l. 
Here R,(x)  = {x' : [ x  - x ' [  < E ;  x' E 10, I]] is an c-neighbourhood of x .  

This is a cover for G, and has by definition an area equal to the s-variation of f, 
[U(s)[z  = I U, S ( x ,  E ) [ Z  = V(6, f). It can be shown then that the fractal dimension is 
given by 

As far as fractal profiles are concerned, D > 1, and the fractal dimension is 2 - [In V /  In E ]  
in the limit E + 0. This means, for instance, that the cover by vertical segments U can be 
used to calculate D. Intuitively this defines the fractal dimension as the scaling exponent of 
the area occupied by the graph Cf. Essentially, V ( E ,  f) measures the difference between 
the area under the upper approximation of f at scale E and the lower approximation of f 
at the same scale. 

The idea we now introduce is to define a finer cover by measuring a local oscillation 
of the function f by a local roughness, defined by 

I The average roughness is defined by W(f, E )  = & w(x .  E )  dx, We will show that this is 
related to the €-variation V and then to the fractal dimension through 

Note that ( f ( x ) ) ,  is a local average of the function f. Actually this local average 
function may be replaced by any smooth interpolating function in (11). It can be replaced 
by, for example, the local RMS straight line in order to have a better local fit. A sufficient 
condition used in the proof of (13) is that the local roughness satisfies 

(14) 
For the average of the function ( f ( x ) ) ,  the condition (14) is easily verified from (8) and 
(1 1). We can see, in fact, that w ( x ,  E )  > 0 holds for any smooth fitting if we assume that 
the function f is nowhere differentiable. The condition w ( x ,  E )  < u ( x .  6 )  means that this 
cover is finer than the one due to the +oscillation and therefore is a better fit to the graph 
G,. Now we demonstrate that (13) holds for oscillations w ( x ,  E )  satisfying (14). For every 
fixed E > 0, W ( X , E )  is a continuous strictly positive function of x on the interval [O, I] .  
Therefore we can find a 6, such that w(x ,  E )  > 6, > 0 for all x .  On the other hand, u ( x ,  E )  
is also continuous with regard to E and x on compact sets of the plane. Then we can choose 
E' < E such that u(x. 6') < 6, for all x .  Therefore we have 

0 < w ( x ,  E )  < u ( x ,  E )  for all x and all E > 0. 

v u ,  E')  < W ( f >  4 < V(f, 6 ) .  (15) 
Taking the logarithm and dividing by I InEl, and using that IIne'l > I l n ~ l ,  we have 
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where, in fact, E' depends on E, but goes to zero as E goes to zero. Therefore, taking the 
limit of (16) as E, E' -+ 0 and using (10) we obtain that the fractal dimension D is given by 

This equation is the main result of this paper and establishes a formal connection between 
the roughness and the fractal dimension. For self-affine curves we have that W( f,  E )  - e H ,  
where H is the Hurst exponent, implying that D = 2 - H .  

4. Numerical algorithms 

It is straightforward to develop numerical algorithms to evaluate the dimension D for profiles 
by using (17). Suppose that we have N+l  points f(n/N) (n = 0, 1 , 2 , ,  , N )  of the digitized 
profile. In the first method for the roughness around the mean height (MHR) we consider a 
<-neighbourhood around each point x = n / N  of the digitized profile. First we evaluate the 
local average height (f ( x ) ) ,  = ( 1 / ~ )  E,,, f(n/N). Then we evaluate the local roughness, 
namely 

Finally, we obtain the <-dependent roughness as 

This procedure is repeated for several scales E and the fractal dimension D is given by the 
slope of the In[lV( f, E)/c*] x In(l/s) plot. Due to discreteness, the log-log plot does not 
give an accurate estimate of D for all scales E. We have defined a smallest scale €0 and 
consider all scales to be of the form ~k = ckco (Q < N ) .  where c > 1 is a constant. Then 
we evaluate the local slope Dj of the graph by taking a fixed number of successive points 
starting at k,. When Di is almost constant we have a reliable estimate of D. We consider 
the most frequent value of Di as the best estimate for the fractal dimension. The error bar 
is estimated by considering the values near Di which are significantly frequent, 

Let us present the second method, the roughness around h e  RMS straight line (SLR). 
In this case, we again consider an <-neighbourhood to each point x .  We evaluate the best 
straight line a , (n /N)  + b, in this interval. with the coefficients a, and b, evaluated by the 
root-mean-square method. The local roughness is defined by 

The €-dependent roughness W(f ,< )  has the same expression as the preceding case 
(equation (19)). The remaining steps are. the same as in the first method. 

In order to test the robustness and the efficiency of these algorithms, we evaluate the D- 
dimension of mathematical objects with well known fractal dimension. The first object is the 
Weierstrass function (w), defined in (2). The local box dimension is given by D = 2 - H .  
The second object is the trace BH(t)  of the fractional Brownian motion (FBM), already 
presented in section 2. The numerical values of D for the WF are shown in table 1. The 
exact fractal dimension is given in the first column; the estimates DVAR obtained by using 
the variation method [15] are shown in the second column; the third and fourth columns 
show the evaluation of the fractal dimensions obtained by our first method (DMHR)  and 
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Table 1. FncUl dimensions D of profiles genemted by the Weierstrass Function wiul b = 2.1 
in the interval [0.60.0.61]; the profiles sNdied have been digitize& wirh 20000 points; D is the 
enact value and DVAR is the estimate of the variaion method; D M ~  and DSLR are the results 
obtained from the roughness around the local average height and around Lhe local RMS straight 
line, respectively. The error in the last digit is indicated between parentheses. 

D DVAR DMHR DSLR 

1.9 1.83(1) 1,898(1) 1.901(1) 
1.7 1.655(5) 1.7W2) 1.70911) 
1.5 1.475(1) 1.500(6) 1.515(1) 
1.3 1.281(1) 1.?92(6) 1.319(1) 
1.1 1.096(1) l.lOI(3) 1.121(1) 

Table 2. Fractal dimensions D of profiles generated by the fractiond Brownian motion with 
n = 8 and M = 700; the studied profiles have 20000 points, D, D ~ A R .  D M H R  and DSW are 
defined as in the preceding table. 

D Dvm DMHR DSLR 

1.9 1.80(2) 1.88(1) 1.87(1) 
1.7 1.68(2) 1.725(5) 1.715(5) 
1.5 1,5242) 1.535(5) 1.525(5) 
1.3 1.34(2) 1.36(2) 1.320(5) 
1.1 1,22(4) 1.24(4) 1.105(5) 

7 
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0.00 1 0.01 0 0.100 
'4'/4 

Figure 3. The In[W(f.e)/sz] x In(]/<) plot of the WeiersvasS function obtained by (a) the 
variation method. (b) the MHR melhod and ( c )  rhe SIR method for H = 0.1 (+), H = 0.5 (*I 
and H = 0.9 (o), 

second methods (DsLR). The error in the last digit is shown between parentheses. The 
results for the FBM are shown in table 2, which is similar to the preceding table. 



On the fractal dimension of self-asfne projies 8087 

. 
.I 

1 
0.001 0.010 0.100 

In(l/E) 

Figure 4. Figure similar to figure 3 for the fractional Brownian motion 
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Figure 5. The graphs of the fractal dimension Di x i 
of the Weiershass function for three different values of 
the parameter H. The exact values are represented by 
full curves. Shown also are the estimates obtained by 
the variation (+), the him (*)and the SLR (0) methods. 

Figurr 6. Figure similar to figure 5 for the fractional 
BrowNan motion. 

The ln[W(f, E ) / E * ]  x In[l/cl plots of the WF for three values of H are depicted in 
figure 3. Similar plots are shown for the FBM in figure 4. From these'plots we evaluate 
the slope D, of several intervals of scales E .  The corresponding Di x i plots are shown in 
figures 5 and 6. 

Now let us discuss the results obtained for the WF. In figure 3 we can see that we have 
a very good straight line for the three methods, but some differences between them can 
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be seen in fi 
stabilize for 
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t 
Figure 7. Covering of the FBM U” with H = O S  by the (a) VAR, (b) m and (c )  SLR 
methods. The middle curves represent the traces. the top (bottom) curves are obtained by 
adding (suhrraaing) the local roughness W ( L . 0  to the caordin&tes of the tmces For the vAR 
method the roughness is given by (IO). The traces are digitized with 5000 points and 6 = [MO. 

ire 5. The results of the variation method at low H (high roughness) only 
:ge scales, and to a value below the expected one. For the other two methods 

the results are almost stable for all scales and are in good agreement with the theoretical 
value of D ,  When the roughness is small (H - 0.9), the variation method is more stable 
and the three methods give good results for the fractal dimension. 

The results obtained by the three methods for the FBM are not as good as the ones 
obtained for the U’F. For high roughness, the and SLR methods give us a better estimate 
of D than the variation one. In the case where the roughness is small, none of the methods 
are stable for large scales, particularly the VAR and MHR methods. In these cases, the 
straight-line roughness method is the only one that gives a reliable estimate of the fractal 
dimension. 

The above results can be explained as follows. Figure 7 shows the coverings of the 
trace of the FBM with an intermediate value of the parameter H. The scales of the plots are 
the same for all three methods. We can see that the covering of the sLR method is the finest 
and that the one for the variation method is very crude. Independent of the test function, 
the VAR method does not give a good estimate of D for low H because the curve is so 
rough (see figures I(c) and 2(c)), implying that the cover is particularly crude. For the “F 
with H - 0.9 the profile is quite smooth, as shown in figure I@, and the three methods 
work well. On the other hand, for the FBM trace in the same range of k ,  the profile is 
also quite smooth but has some hills and valleys (see figure a@)). It means that we have a 
large-scale roughness, which is not taken in account by the VAR and MHR methods. 

All results shown here were obtained for a particular set of parameters described in the 
table captions. However, we have checked the robustness of the methods by considering the 
WF and the FBM with other sets of parameters and found similar results. The estimates of D 
were obtained by visiting each point of the ZOO00 ones of the digitized profile. Moreover, 
the results do not change when the profiles are digitized with less points. For instance, 
we have studied profiles with 5000 and 2000 points and observed a difference only in the 
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last significant digit in the case of 2000 points. Finally, we observe that in all numerical 
evaluations of the fractal dimensions the constant c, which defines the scales E ,  has the value 
c = 1.05. Its value only determines the number of scales in the In[lV(f, €)/t2] x In(l/c) 
plots. 

5. Summary 

In conclusion, we have shown that the roughness is closely related to the fractal dimension 
(Minkowski-Bouligand or box dimensions) of profiles nowhere differentiable. In particular, 
we have demonstrated the relation D = 2 - H for self-affine fractals. This has allowed 
us to present two numerical algorithms for the evaluation of the fractal dimension of one- 
dimensional profiles. These algorithms, based on generalized roughness, are more robust 
and reliable than the standard ones. This last comment applies especially to the method 
of the roughness around the RMS straight line. The mathematical results obtained here can 
be generalized for d-dimensional interfaces. In particular, the numerical algorithms for 
two-dimensional profiles are being developed. 

Acknowledgments 

The authors wish to thank P Mendes and A T Bernardes for useful discussions. This 
research was supported in part by Conselho Nacional de Desenvolvimento Cientifico e 
TecnoMgico (CNPq) and in part by Fundaqio de Amparo h Pesquisa do Estado de Minas 
Gerais (Fapemig), Brazilian agencies. 

References 

[ I ]  Mmdelbrot B B 1982 The Frnctd Geometry ofNnrure (San Francisco: Freeman) 
[21 Feder 1 1988 Fractals (New York: Plenum) 
131 Mea!& P 1990 J.  Coll. Inter. Sci. 134 235 
[4] Mandelbmi B B 1986 Fractals in Physics ed L Pietronem and E Tosattl (Amsterdam: Norlh-Holland) p 3 
[SI Stanley H E and Ostrowsky N (eds) 1988 Random Fluctuations ond Paffem Gmwlh (Dordrecht: Kluwer) 
161 Family F and Vicsek T (eds) 1991 Dynamics of Fracto1 Surfaces (Singapore: World Scientific) 
[7] Vicsek T 1989 Frncrnl Gmwth Phenomena (Singapre: World Scientific) 
(81 Family F 1990 Physic0 168A 561 
[91 Voss R F 1989 Physien 38D 362 

[IO] Mandelbmt B B 1985 Phys Scr. 32 257 
[I I ] Robio M A, Edwards C A ,  Dougheny A and Gollub J P 1989 PAYS, Rev. Lea 63 1685 
[121 Maloy K J, Hansen A and Hinrichsen E L 1992 Phys. Rev. Lett. 68 213 
[I31 Bouligand G 1929 Bull. Sci. Math. 2 185 
[I41 Tricot C. Quiniou 1 F, Wehbi D, Roques-Cmes C and Dubuc B 1988 Rev. Phys. Appl, 23 1 I I 
[I51 Dubuc B, Quiniou I F, Roques-Cmes C, Tricot C and Zucker S W 1989 Phys. Rev. A 39 1500 
[I61 Falconer K 1990 Frnctnl Geomet!y Wlley: Chichester) 


